3.3.55 \(\int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx\) [255]

Optimal. Leaf size=99 \[ \frac {2 b (A b-a B) \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 \sqrt {a-b} \sqrt {a+b} d}-\frac {(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {A \tan (c+d x)}{a d} \]

[Out]

-(A*b-B*a)*arctanh(sin(d*x+c))/a^2/d+2*b*(A*b-B*a)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^2/d/(a
-b)^(1/2)/(a+b)^(1/2)+A*tan(d*x+c)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3079, 12, 2826, 3855, 2738, 211} \begin {gather*} \frac {2 b (A b-a B) \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d \sqrt {a-b} \sqrt {a+b}}-\frac {(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {A \tan (c+d x)}{a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

(2*b*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) - ((A*b -
 a*B)*ArcTanh[Sin[c + d*x]])/(a^2*d) + (A*Tan[c + d*x])/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2826

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3079

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*
(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n
, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac {A \tan (c+d x)}{a d}+\frac {\int \frac {(-A b+a B) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a}\\ &=\frac {A \tan (c+d x)}{a d}+\frac {(-A b+a B) \int \frac {\sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a}\\ &=\frac {A \tan (c+d x)}{a d}-\frac {(A b-a B) \int \sec (c+d x) \, dx}{a^2}+\frac {(b (A b-a B)) \int \frac {1}{a+b \cos (c+d x)} \, dx}{a^2}\\ &=-\frac {(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {A \tan (c+d x)}{a d}+\frac {(2 b (A b-a B)) \text {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=\frac {2 b (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 \sqrt {a-b} \sqrt {a+b} d}-\frac {(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {A \tan (c+d x)}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.61, size = 129, normalized size = 1.30 \begin {gather*} \frac {-\frac {2 b (A b-a B) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\sqrt {-a^2+b^2}}+(A b-a B) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+a A \tan (c+d x)}{a^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

((-2*b*(A*b - a*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] + (A*b - a*B)*(Log[C
os[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + a*A*Tan[c + d*x])/(a^2*d)

________________________________________________________________________________________

Maple [A]
time = 0.44, size = 144, normalized size = 1.45

method result size
derivativedivides \(\frac {-\frac {A}{a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (-A b +a B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}+\frac {2 b \left (A b -a B \right ) \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {A}{a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (A b -a B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}}{d}\) \(144\)
default \(\frac {-\frac {A}{a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (-A b +a B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}+\frac {2 b \left (A b -a B \right ) \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {A}{a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (A b -a B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}}{d}\) \(144\)
risch \(\frac {2 i A}{d a \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}-\frac {b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A}{\sqrt {-a^{2}+b^{2}}\, d \,a^{2}}+\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, d a}+\frac {b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A}{\sqrt {-a^{2}+b^{2}}\, d \,a^{2}}-\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A b}{a^{2} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A b}{a^{2} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{d a}\) \(411\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(-A/a/(tan(1/2*d*x+1/2*c)+1)+1/a^2*(-A*b+B*a)*ln(tan(1/2*d*x+1/2*c)+1)+2*b*(A*b-B*a)/a^2/((a-b)*(a+b))^(1/
2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))-A/a/(tan(1/2*d*x+1/2*c)-1)+(A*b-B*a)/a^2*ln(tan(1/2*d*
x+1/2*c)-1))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 196 vs. \(2 (89) = 178\).
time = 0.48, size = 460, normalized size = 4.65 \begin {gather*} \left [\frac {{\left (B a b - A b^{2}\right )} \sqrt {-a^{2} + b^{2}} \cos \left (d x + c\right ) \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{4} - a^{2} b^{2}\right )} d \cos \left (d x + c\right )}, -\frac {2 \, {\left (B a b - A b^{2}\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right ) - {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{4} - a^{2} b^{2}\right )} d \cos \left (d x + c\right )}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*((B*a*b - A*b^2)*sqrt(-a^2 + b^2)*cos(d*x + c)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2
*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) +
a^2)) + (B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) - (B*a^3 - A*a^2*b - B*a*b^2 +
A*b^3)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(A*a^3 - A*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d*cos(d*x + c)
), -1/2*(2*(B*a*b - A*b^2)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c)))*cos(d*
x + c) - (B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) + (B*a^3 - A*a^2*b - B*a*b^2 +
 A*b^3)*cos(d*x + c)*log(-sin(d*x + c) + 1) - 2*(A*a^3 - A*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d*cos(d*x + c
))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{a + b \cos {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**2/(a+b*cos(d*x+c)),x)

[Out]

Integral((A + B*cos(c + d*x))*sec(c + d*x)**2/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [A]
time = 0.45, size = 175, normalized size = 1.77 \begin {gather*} \frac {\frac {{\left (B a - A b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {{\left (B a - A b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} - \frac {2 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a} + \frac {2 \, {\left (B a b - A b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} a^{2}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

((B*a - A*b)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - (B*a - A*b)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 - 2*A
*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a) + 2*(B*a*b - A*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*s
gn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*
a^2))/d

________________________________________________________________________________________

Mupad [B]
time = 1.99, size = 675, normalized size = 6.82 \begin {gather*} \frac {A\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,2{}\mathrm {i}}{d\,\left (a^2-b^2\right )}-\frac {B\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,2{}\mathrm {i}}{d\,\left (a^2-b^2\right )}+\frac {A\,a\,\mathrm {tan}\left (c+d\,x\right )}{d\,\left (a^2-b^2\right )}-\frac {A\,b^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,2{}\mathrm {i}}{a^2\,d\,\left (a^2-b^2\right )}+\frac {B\,b^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,2{}\mathrm {i}}{a\,d\,\left (a^2-b^2\right )}-\frac {A\,b^2\,\mathrm {tan}\left (c+d\,x\right )}{a\,d\,\left (a^2-b^2\right )}-\frac {B\,b\,\mathrm {atan}\left (\frac {\left (a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-2\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a\,b^2-a^3\right )}^2}\right )\,\sqrt {-\left (a+b\right )\,\left (a-b\right )}\,2{}\mathrm {i}}{a\,d\,\left (a^2-b^2\right )}+\frac {A\,b^2\,\mathrm {atan}\left (\frac {\left (a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-2\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a\,b^2-a^3\right )}^2}\right )\,\sqrt {-\left (a+b\right )\,\left (a-b\right )}\,2{}\mathrm {i}}{a^2\,d\,\left (a^2-b^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^2*(a + b*cos(c + d*x))),x)

[Out]

(A*b*atan((sin(c/2 + (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*2i)/(d*(a^2 - b^2)) - (B*a*atan((sin(c/2 + (d*x)/2)*1i)/
cos(c/2 + (d*x)/2))*2i)/(d*(a^2 - b^2)) + (A*a*tan(c + d*x))/(d*(a^2 - b^2)) - (A*b^3*atan((sin(c/2 + (d*x)/2)
*1i)/cos(c/2 + (d*x)/2))*2i)/(a^2*d*(a^2 - b^2)) + (B*b^2*atan((sin(c/2 + (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*2i)
/(a*d*(a^2 - b^2)) - (A*b^2*tan(c + d*x))/(a*d*(a^2 - b^2)) - (B*b*atan(((a^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(
1/2) + 2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 2*b^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 3*a^2*b^3*sin
(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^3*b^2*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^4*b*sin(c/2 + (d*x)/2)*(b
^2 - a^2)^(1/2))*1i)/(cos(c/2 + (d*x)/2)*(a*b^2 - a^3)^2))*(-(a + b)*(a - b))^(1/2)*2i)/(a*d*(a^2 - b^2)) + (A
*b^2*atan(((a^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 2*b^5*sin(
c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 3*a^2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^3*b^2*sin(c/2 + (d*x)/2)
*(b^2 - a^2)^(1/2) - a^4*b*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))*1i)/(cos(c/2 + (d*x)/2)*(a*b^2 - a^3)^2))*(-(
a + b)*(a - b))^(1/2)*2i)/(a^2*d*(a^2 - b^2))

________________________________________________________________________________________